GEOMYDOECUS (MALLOPHAGA: TRICHODECTIDAE) FROM THE TEXAS AND DESERT POCKET GOPHERS (RODENTIA: GEOMYIDAE)

Ronald A. Hellenthal and Roger D. Price

(RAH) Associate Professor, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556; (RDP) Professor, Department of Entomology, University of Minnesota, St. Paul, Minnesota 55108.

Abstract.-Geomydoccus truncatus Werneek and G. quadridentatus Price and Emerson are redeseribed and illustrated. The new species \boldsymbol{G}. neotruncatus is deseribed, with the type host being Gcomys personatus streckeri Davis.

Key Words: lice, Gcomys arcnarius, Gcomys personatus

Since the initial revision of the pocket gopher lice by Price and Emerson (1971), most of the taxa of the louse genus Geomydoccus Ewing occurring on the host genus Gcomys Rafinesque have been the subject of re-examination and further study and analysis. The principal works dealing with these lice are those by Price and Hellenthal (1975) on the Gcombdoccus texamus complex, Price (1975) on the G. scleritus complex. and Timm and Price (1980) on the G. geomidis complex. This last work presents keys to the males and females of all Geomydoccus known to that time from Geomys gophers. It is the purpose of the present paper to complete the taxonomic study of lice from Gcomys by considering the Geomydoccus truncatus complex from the Texas pocket gopher, Geomys personatus True, and the Geomydoecus quadridentatus complex from the desert pocket gopher, Geomys arenarius Merriam.

Quantitative data for the lice studied in this paper combined with host and locality information form part of a computerized pocket gopher-louse data base maintained at the University of Notre Dame. Counted or measured characters in the following de-
scriptions are followed by the minimal and maximal observed values, and, in parentheses, the sample size, mean, and standard deviation. All measurements are in millimeters. In evaluating character usefulness for specific discrimination, critical values for each character were calculated at the point where the likelihood of single character misidentification of the two compared taxa was equal, given normality and equal variance, and ignoring the probability of collection. For characters offering moderately good diseriminating ability, these critical values and the corresponding probabilities of misidentification are given. In an abbreviated comparative description for a species, quantitative data are given only for those characters whose means differ at a significance level of $P \leq 0.01$. The host distribution map was produced by a computer from a pocket gopher/louse association data base (Hellenthal and Price 1984). The map projection is rectangular to simplify determination of the latitude and longitude for individual collection sites. Original locality data expressed in miles are followed parenthetically by the metric equivalent to 0.1 km ; the English figure, rather than the met-
ric, expresses the precision of the location estimate. Abbreviations used for host accession numbers are KU (University of Kansas), TAM (Texas A\&M University), and TT (Texas Tech University). Detailed deseriptions of the characters and quantitative procedures used for Geomydoecus lice are included in Hellenthal and Price (1980).

Geomydoecus truncatus Werneck Figs. 1-6

Geomydoccus truncatus Werneck, 1950: 13.
Type host: Gcomys personatus personatus Truc.

Male. - As in Fig. 6. Temple width (TW) $0.435-0.470$ (26: 0.450 ± 0.0096); head length (HL) 0.325-0.360 (26: $0.338 \pm$ 0.0089); submarginal and inner marginal temple setae $0.030-0.045$ (15: $0.036 \pm$ 0.0046) and $0.020-0.030$ (24: $0.025 \pm$ $0.0015)$ long, respectively, with submarginal seta positioned near inner marginal seta and both marginal setae blunt, spinilorm (Fig. 3). Antenna with scape length (SL) $0.180-0.200$ (23: 0.191 ± 0.0057), scape medial width (SMW) $0.110-0.125$ (23:0.119 ± 0.0054), scape distal width (SDW) $0.110-$ 0.130 (23: 0.122 ± 0.0054); without projection on posterior margin. Prothorax width (PW) 0.320-0.345 (26:0.330 ± 0.0069). Abdominal tergal setac: 1, 2; 11, 12-16 (26: $14.0 \pm$ 1.18); 111. 16-24 (26: 19.6 ± 1.68); IV, 19-25 (26: 22.3 ± 2.00); V, 16-25 (26: 19.9 ± 2.13); VI, 13-20 (26: 15.8 ± 1.83); tergal and pleural setae on VII, 18-22 (26: 20.5 ± 1.21). Abdominal sternal setac: 11 , 9-12 (25: $10.5 \pm 0.96)$; I11, 9-15 (26: 11.5 $\pm 1.30) ;$ IV, $11-15(26: 13.2 \pm 1.08) ;$ V, $8-$ 12 (25: $10.1 \pm 1.15)$; VI, 6-9 (24: $7.7 \pm$ $0.85)$; VII, 6-9 (25: 6.9 $\pm 0.91)$; VIII, 4-8 (25: 6.1 ± 0.86). Total length (TL) $1.210-$ 1.385 (25:1.285 ± 0.0511). Genitalia as in Fig. 5; spinose sac with 6 medium spines; parameral arch flattened medioposteriorly, width (PAW) 0.140-0.160 (23: $0.154 \pm$ 0.0057); endomeral plate broadly rounded, with small medioposterior notch, width
(EPW) 0.075-0.090 (26: 0.085 ± 0.0037), length (EPL) 0.075-0.100 (24: $0.087 \pm$ $0.0054)$.

Female.-As in Fig. 1. TW 0.475-0.500 (23: 0.483 ± 0.0073); HL 0.310-0.345 (23: 0.327 ± 0.0083); submarginal and inner marginal temple setae $0.030-0.050$ (17: $0.037 \pm 0.0055)$ and $0.035-0.045$ (22:0.040 ± 0.0031) long, respectively, with submarginal seta positioned near inner marginal seta (Fig. 2). PW 0.340-0.385 (23: $0.356 \pm$ 0.0119). Abdominal tergal setae: I, 2; IJ, 1418 (23: 16.3 ± 1.05); 1II, 20-25 (23: 22.4 $\pm 1.38) ; 1 \mathrm{~V}, 23-30(23: 26.2 \pm 1.95) ; \mathrm{V}$, 24-28 (23:25.6 ± 1.08); V1, 21-25 (23: 23.4 ± 1.23); tergal and pleural setae on V1I, 2434 (23: 28.4 ± 2.31). Longest seta of medial 10 on tergite V1, 0.075-0.090 (22: $0.084 \pm$ 0.0040); on tergite V11, $0.090-0.120$ (23: $0.102 \pm 0.0074)$, with $0-2$ (23: 0.6 ± 0.79) of these longer than 0.100 . Longer of medial pair of setac on tergite V1II, 0.060-0.085 (22: 0.073 ± 0.0070). Last tergite with 3 lateral setae close together on each side; outer, middle, and inner setae 0.070-0.095 (19: 0.082 ± 0.0067), 0.080-0.105 (20:0.092 \pm 0.0067), and $0.080-0.105$ (19: $0.095 \pm$ 0.0057) long, respectively. Abdominal sternal setae: 11, 9-13 (23: 10.6 ± 0.84); 111, 913 (23: 11.5 ± 1.04): IV, 12-17 (22: 14.4 $\pm 1.50) ; \mathrm{V}, 10-14(22: 12.0 \pm 1.21) ; \mathrm{VI}, 8-$ 13 (22: 10.8 ± 1.60); V11, 6-10 (22: $7.7 \pm$ 1.16). Subgenital plate with $18-23$ (23:21.2 $\pm 1.53)$ setae, with distribution and lengths as in Fig. 1, with 1 seta on each side distinctly longer and thicker than others. TL 1.165-1.410 (21: 1.271 ± 0.0525). Postvulval selerite as in Fig. 1, with 2 subequal short setae posterior to it on each side. Genital sac as in Fig. 4, width (GSW) 0.2000.280 (17: 0.248 ± 0.0195), length (GSL) $0.100-0.180$ (17: 0.132 ± 0.0251); with weak anterior papillose area and with $0-5$ (17:2.1 ± 1.82) transverse anterior lines, posteriormost line, when present, situated $0.020-0.060(12: 0.042 \pm 0.0121)$ back from anterior sac margin.

Discussion. - The male of G. truncatus is

Figs. 1-6. Geomydoctus truncatus. 1, Female dorsal (left) - ventral (right) view. 2. Female dorsal left temple margin. 3. Male dorsal left temple margin. 4, Female gental sac. 5, Male ventral genitalia. 6, Male dorsal (left)ventral (right) view. Measurements are in millmeters.
easily distinguished from all other Geomydoecus by its uniquely shaped parameral arch; no other deseribed species of this genus has the distinctive medioposterior flattening. The female is not as readily differentiated, but the combination of the genital sae structure, dimensions, and chactotaxy features should separate it.

Werneck (1950) described G. truncatus from a series of six males taken off Geomys personatus from Padre Island, Texas. This locality would make the host G. p. personatuS, the only pocket gopher that Hall (1981) lisis from there. However, we have found only Geomydoecus texams texamus Ewing on that host. The paucity of our records cannot rule out the possibility that G. truncatus may also occur there, but, conversely, we are unable to confirm that it does. Our inability to do this becomes critical since we have now determined that what has been known as G. truncatus actually consists of two species - one from Gcomys p. streckeri Davis and the other from G. p. fallax Merriam. Price and Emerson (1971) had specimens only from G. p. streckeri and named them Geomydoecus truncatus. Numerous subsequent collections from Geomls p. fallax and the determination that these were different from the G. p. streckeri liee raised the necessity of establishing which is the truc Geomydoccus truncatus. Fortunately, we have been able to examine two of Werneck's paratypes and have determined that they are conspecific with our series from Geomys p. follax:

Gcomys p. fallar also has Geomydoceus texamus texamus occurring on it. Of the six gophers of this host taxon that yielded G. I. texamus, only one also had G. truncatus. This one gopher had 12 G. truncatus and only one specimen of G. t. texamus, raising the possibility that the latter might have been a contaminant or straggler. It appears that these two louse taxa, although found on the same host subspecies, occur in exclusive ranges.

Material examined. -2 o, Paratypes of

Geomydoecus truncatus, ex Geomys personatus. Padre Island, Texas; 53 \&, 57 §, ex G. p. fallax, 9 gophers from 7 localities in San Patricio Co., Nueces Co., and Live Oak Co., Texas.

Geomydoecus neotruncatus Hellenthal and Price, New Species

Type host: Geomys personatus streckeri Davis.

Male. - Much as for G. truncatus, except as follows. TW 0.405-0.430 (20: $0.420 \pm$ 0.0053); HL 0.310-0.345 (20: $0.326 \pm$ 0.0077). Antennal SL 0.165-0.185 (19: $0.177 \pm 0.0051)$, SMW 0.100-0.120 (19: 0.109 ± 0.0058). SDW 0.100-0.120 (19: 0.112 ± 0.0047). PW 0.305-0.335 (20: $0.309 \pm 0.0078)$. Setae on sternite II, 7-11 (20: 9.1 ± 1.02); VI, 8-12 (19:9.5 ± 0.90). Genitalia PAW 0.140-0.155 (20:0.145 \pm 0.0048).

Female. - Much as for G. trithcatus, except as follows. TW 0.440-0.465 (20: 0.448 ± 0.0077); HL $0.300-0.330$ (20: $0.316 \pm$ 0.0075); inner marginal temple seta $0.035-$ 0.045 (20: 0.037 ± 0.0030) long. PW $0.325-$ 0.340 (20:0.329 ± 0.0061). Tergal setae: 11, 13-17 (20:15.0 ± 1.23); 111, 18-23 (20: $21.0 \pm 1.49) ; 1 \mathrm{~V}, 20-28$ (20: 23.9 ± 1.65); V, 20-26 (20:24.2 ± 1.65). Longer seta of medial pair on tergite VIII, 0.050-0.075 (19: 0.062 ± 0.0068). Outer seta on last tergite $0.060-0.085$ (20: 0.075 ± 0.0057) long. Sternal setac: II, $8-11$ (20:9.7 ± 0.91); V, 10-15 (20: $13.0 \pm 1.10)$; VI, 9-14 (20: 12.3 ± 1.22); VII, 8-11 (20:9.6 ± 0.88).

Discussion. - Both sexes of G. neotruncatus are smaller than G. trumcatus and tend to have fewer abdominal tergal setae and more sternal setae on the posterior segments. For males, the critical values for discrimination and probabilities of misidenification for the best diseriminating quantitative characters separating these two taxa are the temple width 0.435 (0.034), prothorax width 0.320 (0.085), and scape length 0.184 (0.109). For females, the best
are temple width $0.466(0.009)$, prothorax width 0.343 (0.08 I), and setae on sternite VII 8.69 (0.I77).

The males of both species key to G. trumcatus in the first half of couplet 6 in Timm and Price (1980), where G. neotruncatus can be separated by its temple width less than 0.435 and prothorax width less than 0.320 . The females of both species key either to G. truncatus in couplet 2 or G. quadridentatus Price and Emerson in couplet 9. Temple width under 0.466 and prothorax width under 0.343 will distinguish G. neotruncatus from G. Iruncatus; both may be separated from G. quadridentatus by their shorter setae on pleurites 111-IV (Fig. I vs. Fig. 7) and differences in the genital sac configuration (Fig. 4 vs. Fig. 8).

Material examined. - Holotype 8 , ex Gcomys personatus streckeri, $14 \mathrm{mi}(22.5 \mathrm{~km})$ W Crystal City, Zavala Co., Texas, 9.II.1953, KU-52238; in collection of the University of Kansas. Paratypes, ex G. p. streckeri: 9,7 8, same as holotype; 22 \&. 17 8, same except KU-52239 or 10.II.1953, KU-52245, 52246; 13 \&, 11 \%, E Carrizo Springs, Dimmit Co., Texas, 4.I.1970, TT9665,$9666 ; 6$, 4 f, $13 \mathrm{mi}(20.9 \mathrm{~km}) \mathrm{N}$ or NE Carrizo Springs, Dimmit Co., Texas, 17.I.1970, TT-10126, 10131: 18, 1 mi (I. 6 km) SW Carrizo Springs, Dimmit Co., Texas, 23.V.1974, TAM-276I3; 5 \&. 4 \%. Carrizo Springs, Dimmit Co., Texas, 24.XI.1938, TAM-789; paratypes distributed among the United States National Museum of Natural History. Field Museum of Natural History, University of Minnesota, and Oklahoma State University.

Geomydoecus quadridentatus Price and Emerson

Figs. 7-I I
Geomydoecus quadridentatus Price and Emerson, 1971: 240. Type host: Gcomys arenarius arcnarius Merriam.

Male.-Grossly as in Fig. 6, except antenna as in Fig. 10, and dorsal abdomen as
in Fig. 11. TW 0.365-0.410 (80: $0.392 \pm$ 0.0100); HL $0.270-0.325$ (79: $0.295 \pm$ 0.0126); submarginal and inner marginal lemple setae 0.040-0.065 (73: $0.052 \pm$ 0.0051) and 0.020-0.030 (79: $0.024 \pm$ 0.0023) long, respectively. Antenna with SL $0.145-0.175$ (80: 0.164 ± 0.0069), SMW $0.095-0 . \mathrm{I} 20$ (80: 0.I09 ± 0.0062), SDW $0.115-0.150$ (80: 0.135 ± 0.0082); with prominent process on posterior margin (Fig. 10). PW 0.265-0.315 (79: 0.289 ± 0.0112). Abdominal tergal setae: I, 2; II, 8-16 (80: 12.2 \pm I.43); III, 14-23 (78: 18.7 ± 1.65); IV, $17-27$ (78: 21.1 ± 2.03); V, 16-26(78: 19.5 ± 1.90); VI, II-19 (78: I 5.0 ± 1.54); tergal and pleural setae on VII, 15-24 (80: $20.2 \pm 1.69)$. Abdominal sternal setae: 1I, 9-15 (79: 11.7 ± 1.49); III, 11-17 (79: I3.9 $\pm 1.39) ; 1 \mathrm{~V}, 11-19(80: 14.3 \pm 1.62) ; \mathrm{V}, 8-$ 14 (80: 10.8 ± 1.42); VI, 6-11 (79: $9.2 \pm$ I.13); VII, 5-9 (77: 7.3 ± 0.91); VIII, 5-7 (79:5.9 ± 0.51). TL 1.130-1.4I5 (79: 1.245 ± 0.0634). Genitalia as in Fig. 9; spinose sac with 4 large central and $0-2$ smaller laterally displaced spines; parameral arch with prominent medioposterior projection, PAW $0.130-0.155$ (79: 0.144 ± 0.0052); endomeral plate triangular with short apical division. EPW 0.065-0.080 (80: $0.072 \pm$ 0.0035), EPL 0.060-0.080 (80: $0.071 \pm$ 0.0049).

Female.-Grossly as in Fig. I, except dorsal abdomen as in Fig. 7. TW 0.400-0.470 (80: 0.439 ± 0.0122); HL 0.260-0.310 (80: 0.283 ± 0.0098); submarginal and inner marginal temple setae $0.040-0.070$ (78: $0.054 \pm 0.0051)$ and $0.040-0.050(78: 0.045$ ± 0.0036) long, respectively. PW $0.280-$ 0.345 (80: 0.311 ± 0.0120). Abdominal tergal setae: 1, 2; II, 13-19 (78: 15.2 ± 1.40) III, 19-27 (77: 21.8 ± 1.94); IV, 20-30 (77: 24.6 ± 2.40); V, 18-28 (78: 22.5 ± 2.21); Vl, 16-26 (79: 20.9 ± 2.38); tergal and pleural setac on V11, 25-39 (80: 32.4 ± 2.95). Longest seta of medial 10 on tergite VI, $0.070-0.100$ (80: 0.087 ± 0.0062); on tergite VlI, 0.085-0.115 (80:0.102 $\pm 0.0069)$. with 0-6 (80: 0.9 ± 1.44) of these longer

Figs. 7-11. Gcomidoccus quadridentatus. 7, Female dorsal abdomen. 8. Female genital sac. 9, Male ventral genitalia. 10, Male ventral antenna. 11, Male dorsal abdomen. Measurements are in millimeters.
than 0.100 . Longer of medial pair of setae on tergite VIII, 0.050-0.085 (79:0.067 \pm 0.0082). Last tergite with outer, middle, and inner setae $0.045-0.075$ (74: $0.058 \pm$ $0.0064), 0.060-0.090(74: 0.074 \pm 0.0065)$. and $0.060-0.090(79: 0.076 \pm 0.0069)$ long, respectively. Abdominal sternal setac: 11, 816 (79: 11.9 ± 1.77); III. 11-17 (77: 14.3 $\pm 1.26) ; \mathrm{IV}, 11-19(79: 15.0 \pm 1.75) ; \mathrm{V}, 8-$ 16 (78: 11.8 ± 1.51); V1, 7-12 (78: $9.6 \pm$ 1.02); VII, 6-11 (78:8.8 ± 0.96). Subgenital plate with $18-26(80: 21.7 \pm 2.07)$ setae. TL 1.090-1.335 (79: 1.198 ± 0.0532). Genital sac as in Fig. 8, GSW 0.175-0.255 (79: $0.206 \pm 0.0144)$, GSL 0.155-0.200 (77: $0.181 \pm 0.0115)$, with $0-4(79: 2.1 \pm 0.82)$ curved medioanterior loops, posteriormost loop, when present, situated $0.040-0.105$ (78:0.071 ± 0.0115) back from anterior sac margin.

Discussion. - Both sexes of G. quadridentatus are easily separated from G. truncatus
and G. neotruncatus. Males of G. quadridemtatus have conspicuously different genitalia (Fig. 9 vs. Fig. 5), the antennal scape with a posterior process (Fig. 10), and dorsal abdominal chaetotaxy (Fig. 11) with longer setae on pleuron V, generally longer lateral tergal setae, and the three short setae on each side of the last tergite evenly spaced and aligned with very short seta as shown. Females of G. quadridentatus have a different line configuration of the genital sac (Fig. 8 vs. Fig. 4) and longer pleural setae at least on abdominal segments III-V (Fig. 7). These three species of lice also are well separated geographically, with G. quadridentatus distributed in north central Chihuahua, western Texas, and south central New Mexico, and with G. truncatus and G. neotruncatus in south central Texas (Fig. 12).

As originally described by Price and Emerson (1971), males of G. quadridentatus were said to have only four large genital sac
spines, with no mention of one or two smaller laterally displaced spines. However, recent examination of much larger series of lice than were available earlier has shown 94 of $179(52.5 \%)$ males with only the four large central spines, 46 (25.7%) with a single smaller additional spine, and 39 (21.8\%) with two smaller spines as in Fig. 9. The percentage of gophers with no, one, or two smaller sac spines is essentially the same for all gopher populations of G. quadridentatus studied. The presence of these smaller spines should not complicate proper identification, if other characters and host association are considered.

There is discussion among mammalogists as to whether Geomys arenarius is a valid species apart from G. bursarius (Shaw). Also uncertain are the relationships among up to live populations of Geomys possessing what we here call Geomydoecus quadridentatus: 1) gophers around Gran Quivera, New Mexico: 2) gophers around San Antonio, New Mexico; 3) gophers considered to be G. a. brevirostris Hall; 4) a "river" population of gophers belonging to G. a. arenarius; and 5) an "upland" population of G. a. arenarius. We collected numerous lice from all five of these groups, analyzed them qualitatively and quantitatively, and could find no meaningful differences. We could demonstrate occasional quantatitive character differences at a relatively high probability of misidentification, but these showed no consistent occurrence. We do not believe these louse populations merit taxonomic distinctions at this time. Speaking strictly from the louse standpoint, the lice from all live populations are sufficiently different from lice from Geomys bursarius to support G. arenarius as a separate taxon and sufficiently similar to each other to group all five gopher populations into G. arenarius.

Material examined. -244 ㅇ, 267 of, ex Geomys arenarius arenarius, 50 gophers from 17 localities in New Mexico, Texas, and Chihuahua; 67 of, 51 ô, ex G. a. hrevirostris, 15 gophers from 6 localities in New

Fig. 12. Geographic distribution of Geomudeecus truncatus (closed circles), G. notrincatus (open circles), and G. quadridentatus (triangles).

Mexico; 26 ㅇ, 22 ถิ, ex Geomys, 7 gophers from 2 localities near Gran Quivera, New Mexico; 35 \&, 28 of ex Geomys, 4 gophers near San Antonio, New Mexico.

Acknowledgments

We wish to thank Sebastião J. de Oliveira, Curator, Fundação Oswaldo Cruz, Rio de Janciro, Brasil, for the loan of the Werneck type series. Partial support for this study was supplied by a grant from the National Science Foundation to the University of Notre Dame (Grant No. BSR86-14456). This is published as paper 15,754 of the Scientific Journal Series of the Minnesota Agricultural Experiment Station on researel conducted under Project No. Min-17-015.

Literature Cited

Hall, E. R. 1981. The Mammals of North America. 2nd Ed. Vol. 1. John Wiley \& Sons. New York. $N Y^{\prime} . x v+600+90$ pp.
Hellenthal, R. A. and R. D. Price. 1980. A review ol the Geomydoccus subcaltfornicus Complex (Mallophaga: Trichodectidac) from Thomomes pockel gophers (Rodenta: Geomyidae), with a discussion of quantitative leehniques and automated taxo-
nomic procedures. Ann. Entomol. Soc. Amer. 73: 495-503

- 1984. Distributional associatuons among Geomydoccus and Thomomydoceus lice (Malloplaga: Trichodectidac) and pocket gopher hosis of the Thomomys bottae group (Rodentia: Geomyidac). J. Med. Entomol 21: 432-446.
Price, R. 1). 1975. The Geomydoceus (Malkophaga: Tricholectidace of the southeastern USA pocket gophers (Rodentia: Gcomyidae). Proc. Intomol. Soc. Wash. 77: 61-65.
Price, R, 1). and K. C. Emerson. 1971. A revision of the genus Goomydoecus (Mallophuga: Trichodectidac) of the New World pocket gophers (Rodentia: (iconyidac). I. Med. Eintomol. 8: 228-257.

Price, R. D. and R. A. flellenthal. 1975. A review of the (ieomydoecus texamus complex (Mallophaga: Trichodectidac) from (Beomss and Pappogeomys (Roclentia: Geomyidace). J. Mcel. Entomol. I2: 40I408.

Timm, R. M. and R. D. Price. 1980. The taxonomy of (icomydoceus (Mallophaga: Trichodectidac) from the Geomys bursarius complex (Rodentia: Geomyidac). J. Med Entomol. 17: 126-145.
Werneck, F. L. 1950. Os Malófagos de Mamíferos. Parte II: Ischnoccra (contınuação de Trichodectidac) e Rliyncophthirina. El. do Inst. Osw. Cruz, Rio de lancire. 207 pp.

